ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 32027
Темы:    [ Малые шевеления ]
[ Целочисленные решетки (прочее) ]
[ Композиции поворотов ]
[ Поворот на 90╟ ]
[ Процессы и операции ]
Сложность: 5-
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

В каждый узел бесконечной клетчатой бумаги воткнута вертикальная булавка. Иголка длины l лежит на бумаге параллельно линиям сетки. При каких l иголку можно повернуть на 90°, не выводя из плоскости бумаги? Иголку разрешается как угодно двигать по плоскости, но так, чтобы она проходила между булавками; толщиной булавок и иголки пренебречь.

Решение

Соединим отрезками всевозможные пары узлов клетчатой бумаги, расстояние между которыми не превосходит l. Будем считать, что один из концов O иголки не лежит ни на одном из нарисованных отрезков (в противном случае этого можно добиться небольшим шевелением иголки). Начнем поворачивать иголку вокруг этого конца. Если в процессе этого движения она упрется в булавку, то станем двигать иголку вдоль себя до тех пор, пока она не перестанет соприкасаться с булавкой (при таком движении мы можем быть уверены, что не упремся ни в какую другую булавку, в силу выбора начального положения конца иголки). Затем будем двигать иголку вдоль себя в обратном направлении (но оставляя булавку на сей раз с другой стороны от иголки) до тех пор, пока ее конец O не вернется в исходное положение. Продолжая действовать таким образом, мы сможем повернуть иголку на любой угол.

Замечания

Источник решения: книга "В.О.Бугаенко. Турниры им. Ломоносова. Конкурсы по математике. МЦНМО-ЧеРо. 1998".

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 05
Дата 1982
задача
Номер 08

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .