ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 32099
Темы:    [ Раскраски ]
[ Отношение эквивалентности. Классы эквивалентности ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 7,8,9,10
В корзину
Прислать комментарий

Условие

На плоскости нарисовано некоторое количество равносторонних треугольников. Они не пересекаются, но могут иметь общие участки сторон. Мы хотим покрасить каждый треугольник в какой-нибудь цвет так, чтобы те из них, которые соприкасаются, были покрашены в разные цвета (треугольники, имеющие одну общую точку, могут быть покрашены в один цвет). Хватит ли для такой раскраски двух цветов?


Решение

  Будем называть два треугольника параллельными, если какая-то сторона одного из них параллельна какой-то стороне другого. Ясно, что тогда и каждая сторона одного из них параллельна некоторой стороне другого. Поэтому параллельность на множестве равносторонних треугольников на плоскости является отношением эквивалентности.

  Поскольку каждый треугольник может иметь общий участок стороны только с параллельным ему треугольником, то раскраску можно производить для каждого "класса параллельности" независимо. Покажем, как покрасить в два цвета, удовлетворяя условиям задачи, треугольники одного "класса параллельности". Введём для этого на "классе параллельности" понятие ориентации: два треугольника на рис. слева одинаково ориентированны, а два треугольника на рис. справа – противоположно ориентированны.

  Очевидно, что два треугольника могут иметь общий участок сторон, только если они противоположно ориентированы. Поэтому если мы покрасим в один цвет все треугольники одной ориентации, а в другой цвет – все треугольники противоположной ориентации, то получим нужную раскраску в два цвета.


Ответ

Хватит.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 11
Дата 1988
задача
Номер 08

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .