ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 34930
Темы:    [ Индукция в геометрии ]
[ Плоскость, разрезанная прямыми ]
[ Раскраски ]
Сложность: 2+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Несколько прямых делят плоскость на части. Докажите, что эти части можно раскрасить в 2 цвета так, что граничащие части будут иметь разный цвет.


Подсказка

Рассуждайте, используя индукцию по количеству прямых.


Решение

Будем использовать индукцию по количеству прямых n. При  n = 1  утверждение задачи очевидно: достаточно покрасить две полуплоскости, на которые одна прямая делит плоскость, в разные цвета. Пусть утверждение задачи верно для k прямых. Рассмотрим некоторые  k + 1  прямых. "Забывая" пока про (k+1)-ю прямую, раскрасим области, на которые делят плоскость остальные k прямых, в два цвета так, что граничащие части будут иметь разный цвет (это можно сделать по предположению индукции). При такой раскраске области, граничащие по (k+1)-й прямой, будут иметь одинаковый цвет. Далее перекрасим все области, расположенные по одну из сторон относительно (k+1)-й прямой, в противоположный цвет. Полученная в результате раскраска удовлетворяет условию задачи.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 1
Название Метод математической индукции
Тема Индукция
параграф
Номер 3
Название Индукция в геометрии и комбинаторике
Тема Индукция (прочее)
задача
Номер 01.054
web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .