ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Имеется две кучки камней - по 7 в каждой. За ход разрешается взять любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать.
Диагонали AD, BE и CF шестиугольника ABCDEF пересекаются
в одной точке. Пусть A' — точка пересечения прямых AC и
FB, B' — точка пересечения BD и AC, C' — точка
пересечения CE и BD. Докажите, что точки пересечения прямых
A'B' и D'E', B'C' и E'F', C'D' и F'A' лежат на одной
прямой.
Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой. |
Задача 34971
УсловиеНайдите все целые решения уравнения yk = x² + x, где k – фиксированное натуральное число, большее 1. ПодсказкаРазложите правую часть на множители и используйте взаимную простоту этих множителей. Решениеyk = x(x + 1). Числа x и x + 1 взаимно просты, поэтому x и x + 1 являются k-ми степенями целых чисел. Ясно, что имеется ровно две пары последовательных целых чисел, являющихся k-ми степенями при k > 1 – (–1, 0) и (0, 1). Таким образом, x может принимать только два значения: 0 и –1. Остается проверить, что оба эти значения подходят и в обоих случаях y = 0. Ответ(0, 0) и (–1, 0). Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке