ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 35087
УсловиеИзвестно, что сумма трех плоских углов при
каждой вершине тетраэдра равна 1800.
Докажите, что все его грани - равные треугольники.
ПодсказкаИспользуйте развертку.
РешениеПусть данный тетраэдр - ABCD. Рассмотрим его развертку на плоскость ABC. Пусть грани ABD, BCD и CAD при разворачивании тетраэдра перешли в треугольники ABE, BCF и CAG. Сумма углов EAB, BAC, CAG равна 1800, поскольку эти углы равны трем плоским углам тетраэдра при вершине A. Следовательно, точка A лежит на прямой EG. Аналогично доказывается, что точка B лежит на прямой EF и точка C лежит на прямой FG. Таким образом, развертка представляет собой треугольник EFG. Точки A, B, C лежат на его сторонах GE, EF, FG. Кроме того EA=AG, поскольку отрезки EA и AG равны ребру AD тетраэдра. Аналогично, EB=BF и FC=CG. Это означает, что AB, CB, CA - средние линии треугольника EFG. Средние линии делят треугольник EFG на 4 равных треугольника ABE, BCF, CAG и ABC, которые равны, соответственно граням ABD, BCD, CAD и ABC тетраэдра ABCD. Итак, все грани - равные треугольники. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке