ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 35539
Тема:    [ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Известно, что каждое из целых чисел a, b, c, d делится на  ab – cd.  Докажите, что  ab – cd  равно либо 1, либо –1.


Подсказка

Покажите, что  ab – cd  делится на  (ab – cd)².


Решение

Так как a, b, c, d делятся на  ab – cd,  то ab и cd делятся на  (ab – cd)².  Значит, и  ab – cd  делится на  (ab – cd)².  Отсюда легко следует утверждение задачи.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .