Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Точки P1 и P2 изогонально сопряжены относительно треугольника ABC. Докажите, что их подерные окружности (описанные окружности подерных треугольников (см. задачу 5.99)) совпадают, причем центром этой окружности является середина отрезка P1P2.
б) Докажите, что это утверждение останется верным, если из точек P1 и P2 проводить не перпендикуляры к сторонам, а прямые под данным (ориентированным) углом.
в) Докажите, что стороны подерного треугольника точки P1 перпендикулярны прямым, соединяющим точку P2 с вершинами треугольника ABC.

   Решение

Задача 35579
Темы:    [ Гомотетия и поворотная гомотетия ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Наименьшая или наибольшая площадь (объем) ]
Сложность: 4-
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Докажите, что внутри выпуклого многоугольника можно поместить его образ при гомотетии с коэффициентом – ½.


Подсказка

Этот образ можно поместить даже в треугольник наибольшей площади с вершинами в вершинах исходного многоугольника.


Решение

  Рассмотрим треугольник ABC наибольшей площади из всех треугольников с вершинами в вершинах исходного многоугольника. Проведя через вершины этого треугольника прямые, параллельные противоположным сторонам, получим «удвоенный» треугольник A'B'C'. Покажем, что весь данный многоугольник содержится целиком внутри треугольника A'B'C'. Действительно, предположим противное – некоторая вершина X многоугольника лежит вне треугольника A'B'C'. Тогда выполняется хотя бы одно из следующих трёх условий:
    1) точка X лежит по разные стороны с отрезком BC относительно прямой B'C',
    2) точка X лежит по разные стороны с отрезком CA относительно прямой C'A',
    3) точка X лежит по разные стороны с отрезком AB относительно прямой A'B'.
  Пусть имеет место первая возможность. Тогда  SXBC > SABC  (основание BC общее, а высота, проведённая к BC, у треугольника XBC больше), что противоречит нашему предположению.
  Аналогично разбираются оставшиеся две возможности.
  Рассмотрим гомотетию с центром в центре тяжести треугольника ABC и коэффициентом – ½. При выполнении этой гомотетии треугольник A'B'C' перейдёт в треугольник ABC, а образ данного многоугольника окажется внутри треугольника ABС.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .