ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 35600
Темы:    [ Уравнения в целых числах ]
[ Шахматные доски и шахматные фигуры ]
[ Текстовые задачи (прочее) ]
Сложность: 2+
Классы: 7,8
В корзину
Прислать комментарий

Условие

Остап Бендер в интервью шахматному журналу о сеансе одновременной игры в Васюках сообщил, что в одной из партий у него осталось фигур в 3 раза меньше, чем у соперника, и в 6 раз меньше, чем свободных клеток на доске, а в другой партии фигур у него осталось в 5 раз меньше, чем у соперника, и в 10 раз меньше, чем свободных клеток на доске, и все-таки он сумел выиграть обе партии. Можно ли верить его рассказу?


Решение

Обозначим через N количество фигур у О. Бендера. В первом случае  N + 3N + 6N = 64,  что невозможно. Во втором случае  N + 5N + 10N = 64  и  N = 4,  что также невозможно, так как у противника при этом должно остаться 20 фигур.


Ответ

Нельзя.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .