ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56568
Тема:    [ Угол между касательной и хордой ]
Сложность: 4
Классы: 8
В корзину
Прислать комментарий

Условие

Две окружности касаются внутренним образом в точке M. Пусть AB — хорда большей окружности, касающаяся меньшей окружности в точке T. Докажите, что MT — биссектриса угла AMB.

Решение

Пусть A1 и B1 — точки пересечения прямых MA и MB с меньшей окружностью. Так как M — центр гомотетии окружностей, то  A1B1 || AB. Поэтому  $ \angle$A1MT = $ \angle$A1TA = $ \angle$B1A1T = $ \angle$B1MT.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 2
Название Вписанный угол
Тема Вписанный угол
параграф
Номер 3
Название Угол между касательной и хордой
Тема Угол между касательной и хордой
задача
Номер 02.027

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .