ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На доске написали 100 попарно различных натуральных чисел a1, a2, ..., a100. Затем под каждым числом ai написали число bi, полученное прибавлением к ai наибольшего общего делителя остальных 99 исходных чисел. Какое наименьшее количество попарно различных чисел может быть среди b1, b2, ..., b100? |
Задача 56568
УсловиеДве окружности касаются внутренним образом в
точке M. Пусть AB — хорда большей окружности, касающаяся
меньшей окружности в точке T. Докажите, что MT — биссектриса угла AMB.
РешениеПусть A1 и B1 — точки пересечения прямых MA
и MB с меньшей окружностью. Так как M — центр гомотетии
окружностей, то
A1B1 || AB. Поэтому
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке