ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 56612
УсловиеПродолжение биссектрисы AD остроугольного
треугольника ABC пересекает описанную окружность в точке E.
Из точки D на стороны AB и AC опущены перпендикуляры DP
и DQ. Докажите, что
SABC = SAPEQ.
РешениеТочки P и Q лежат на окружности с диаметром AD; эта
окружность пересекает сторону BC в точке F (F не совпадает с D,
если AB Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке