ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56786
Темы:    [ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Четырехугольник: вычисления, метрические соотношения. ]
[ Отношение площадей подобных треугольников ]
Сложность: 4
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Отрезок MN, параллельный стороне CD четырехугольника ABCD, делит его площадь пополам (точки M и N лежат на сторонах BC и AD). Длины отрезков, проведенных из точек A и B параллельно CD до пересечения с прямыми BC и AD, равны a и b. Докажите, что  MN2 = (ab + c2)/2, где c = CD.

Решение

Пусть для определенности лучи AD и BC пересекаются в точке O. Тогда  SCDO : SMNO = c2 : x2, где x = MN, и  SABO : SMNO = ab : x2, так как  OA : ON = a : x и OB : OM = b : x. Следовательно,  x2 - c2 = ab - x2, т. е.  2x2 = ab + c2.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 4
Название Площадь
Тема Площадь
параграф
Номер 6
Название Прямые и кривые, делящие фигуры на равновеликие части
Тема Прямые и кривые, делящие фигуры на равновеликие части
задача
Номер 04.035

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .