ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56830
Темы:    [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 2+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AC1 = AB1, BA1 = BC1 и CA1 = CB1. Докажите, что A1, B1 и C1 — точки касания вписанной окружности со сторонами.

Решение

Пусть  AC1 = AB1 = x, BA1 = BC1 = y и  CA1 = CB1 = z. Тогда  a = y + z, b = z + x и c = x + y. Вычитая третье равенство из суммы первых двух, получаем  z = (a+b-c)/2. Поэтому, если треугольник ABC задан, то положение точек A1 и B1 определено однозначно. Аналогично положение точки C1 определено однозначно. Остается заметить, что точки касания вписанной окружности со сторонами удовлетворяют указанным в условии задачи соотношениям.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 1
Название Вписанная и описанная окружности
Тема Вписанные и описанные окружности
задача
Номер 05.001

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .