ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56833
Тема:    [ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8
В корзину
Прислать комментарий

Условие

Внутри треугольника ABC взята такая точка P, что  $ \angle$PAB : $ \angle$PAC = $ \angle$PCA : $ \angle$PCB = $ \angle$PBC : $ \angle$PBA = x. Докажите, что x = 1.

Решение

Пусть AA1, BB1 и CC1 — биссектрисы треугольника ABCO — точка их пересечения. Предположим, что x > 1. Тогда  $ \angle$PAB > $ \angle$PAC, т. е. точка P лежит внутри треугольника AA1C. Аналогично точка P лежит внутри треугольников CC1B и BB1A. Но единственной общей точкой трех этих треугольников является точка O. Получено противоречие. Случай x < 1 разбирается аналогично.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 1
Название Вписанная и описанная окружности
Тема Вписанные и описанные окружности
задача
Номер 05.004

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .