ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57048
Темы:    [ Теорема Птолемея ]
[ Вписанные и описанные окружности ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 5
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Расстояния от центра описанной окружности остроугольного треугольника до его сторон равны da, db и dc. Докажите, что  da + db + dc = R + r.

Решение

Пусть A1, B1 и C1 — середины сторон BC, CA и AB. По теореме Птолемея  AC1 . OB1 + AB1 . OC1 = AO . B1C1, где O — центр описанной окружности. Поэтому  cdb + bdc = aR. Аналогично  adc + cda = bR и  adb + bda = cR. Кроме того,  ada + bdb + cdc = 2S = (a + b + c)r. Складывая все эти равенства и сокращая на a + b + c, получаем требуемое.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 6
Название Многоугольники
Тема Многоугольники
параграф
Номер 3
Название Теорема Птолемея
Тема Теорема Птолемея
задача
Номер 06.037

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .