ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57161
Тема:    [ Метод ГМТ ]
Сложность: 3
Классы: 9
В корзину
Прислать комментарий

Условие

Пусть D и E — середины сторон AB и BC остроугольного треугольника ABC, а точка M лежит на стороне AC. Докажите, что если MD < AD, то ME > EC.

Решение

Опустим из точки B высоту BB1. Тогда AD = B1D и CE = B1E. Ясно, что если MD < AD, то точка M лежит на отрезке AB1, т. е. вне отрезка B1C. Следовательно, ME > EC.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 7
Название Геометрические места точек
Тема Геометрические Места Точек
параграф
Номер 6
Название Метод ГМТ
Тема Метод ГМТ
задача
Номер 07.032

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .