ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57165
Тема:    [ ГМТ с ненулевой площадью ]
Сложность: 2
Классы: 9
В корзину
Прислать комментарий

Условие

Пусть O — центр прямоугольника ABCD. Найдите ГМТ M, для которых  AM $ \geq$ OM, BM $ \geq$ OM, CM $ \geq$ OM и DM $ \geq$ OM.

Решение

Проведем серединный перпендикуляр l к отрезку AO. Ясно, что AM $ \geq$ OM тогда и только тогда, когда точка M лежит по ту же сторону от прямой l, что и точка O (или лежит на прямой l). Поэтому искомым ГМТ является ромб, образованный серединными перпендикулярами к отрезкам  OA, OB, OC и OD.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 7
Название Геометрические места точек
Тема Геометрические Места Точек
параграф
Номер 7
Название ГМТ с ненулевой площадью
Тема ГМТ с ненулевой площадью
задача
Номер 07.036

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .