ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 57228
УсловиеПостройте треугольник ABC по центру описанной
окружности O, точке пересечения медиан M и основанию H
высоты CH.
РешениеПусть H1 — точка пересечения высот
треугольника ABC. Согласно задаче 5.105
OM : MH1 = 1 : 2
и точка M лежит на отрезке OH1. Поэтому можно построить
точку H1. Затем проводим прямую H1H и восставляем к этой прямой в
точке H перпендикуляр l. Опустив из точки O перпендикуляр на
прямую l, получаем точку C1 (середину отрезка AB). На луче C1M
строим точку C так, что
CC1 : MC1 = 3 : 1. Точки A и B
являются точками пересечения прямой l с окружностью радиуса CO с
центром O.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке