ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57323
Тема:    [ Сумма длин диагоналей четырехугольника ]
Сложность: 5+
Классы: 8
В корзину
Прислать комментарий

Условие

На плоскости даны n красных и n синих точек, никакие три из которых не лежат на одной прямой. Докажите, что можно провести n отрезков с разноцветными концами, не имеющих общих точек.

Решение

Рассмотрим все разбиения данных точек на пары разноцветных точек. Этих разбиений конечное число, поэтому найдется разбиение, для которого сумма длин отрезков, заданных парами точек разбиения, наименьшая. Покажем, что тогда эти отрезки не будут пересекаться. В самом деле, если бы два отрезка пересекались, то мы смогли бы выбрать разбиение с меньшей суммой длин отрезков, заменив диагонали выпуклого четырехугольника на его противоположные стороны (рис.).


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 9
Название Геометрические неравенства
Тема Геометрические неравенства
параграф
Номер 3
Название Сумма длин диагоналей четырехугольника
Тема Сумма длин диагоналей четырехугольника
задача
Номер 09.019

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .