ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дана равнобокая трапеция $ABCD$ ($AB=CD$). На описанной около неё окружности выбирается точка $P$ так, что отрезок $CP$ пересекает основание $AD$ в точке $Q$. Пусть $L$ – середина $QD$. Докажите, что длина диагонали трапеции не превосходит суммы расстояний от середин её боковых сторон до любой точки прямой $PL$. |
Задача 57359
УсловиеДокажите, что площадь треугольника, вершины которого
лежат на сторонах параллелограмма, не превосходит половины площади
параллелограмма.
РешениеРассмотрим сначала такой случай: две вершины A и B
треугольника ABC лежат на одной стороне PQ параллелограмма.
Тогда AB Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке