ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57376
Тема:    [ Четырехугольник (неравенства) ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Диагонали делят выпуклый четырехугольник ABCD на четыре треугольника. Пусть P — периметр четырехугольника ABCDQ — периметр четырехугольника, образованного центрами вписанных окружностей полученных треугольников. Докажите, что  PQ > 4SABCD.

Решение

Пусть ri, Si и pi — радиусы вписанных окружностей, площади и полупериметры полученных треугольников. Тогда  Q $ \geq$ 2$ \sum$ri = 2$ \sum$(Si/pi) > 4$ \sum$(Si/P) = 4S/P.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 9
Название Геометрические неравенства
Тема Геометрические неравенства
параграф
Номер 9
Название Четырехугольник
Тема Четырехугольник (неравенства)
задача
Номер 09.070

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .