ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57566
Тема:    [ Экстремальные свойства правильных многоугольников ]
Сложность: 6
Классы: 8,9
В корзину
Прислать комментарий

Условие

а) Докажите, что среди всех n-угольников, описанных около данной окружности, наименьшую площадь имеет правильный n-угольник.
б) Докажите, что среди всех n-угольников, описанных около данной окружности, наименьший периметр имеет правильный n-угольник.

Решение

а) Пусть неправильный n-угольник описан около окружности S. Опишем около этой окружности правильный n-угольник, а около него опишем окружность S1 (рис.). Докажем, что площадь части неправильного n-угольника, заключенной внутри S1, больше площади правильного n-угольника. Все касательные к S отсекают от S1 равные сегменты. Поэтому сумма площадей сегментов, отсекаемых от S1 сторонами правильного n-угольника, равна сумме площадей сегментов, отсекаемых от S1 сторонами неправильного n-угольника или их продолжениями. Но для правильного n-угольника эти сегменты не пересекаются (точнее говоря, не имеют общих внутренних точек), а для неправильного n-угольника некоторые из них обязательно перекрываются, поэтому площадь объединения этих сегментов для правильного n-угольника больше, чем для неправильного. Следовательно, площадь части неправильного n-угольника, заключенной внутри окружности S1, больше площади правильного n-угольника, а площадь всего неправильного n-угольника и подавно больше площади правильного.
б) Эта задача следует из а), так как периметр многоугольника, описанного около окружности радиуса R, равен 2S/R, где S — площадь многоугольника.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 11
Название Задачи на максимум и минимум
Тема Экстремальные свойства. Задачи на максимум и минимум.
параграф
Номер 7
Название Экстремальные свойства правильных многоугольников
Тема Экстремальные свойства правильных многоугольников
задача
Номер 11.046

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .