Условие
Дано несколько выпуклых многоугольников, причем
нельзя провести прямую так, чтобы она не пересекала ни
одного многоугольника и по обе стороны от нее лежал
хотя бы один многоугольник. Докажите, что эти многоугольники
можно заключить в многоугольник, периметр которого
не превосходит суммы их периметров.
Решение
Докажем, что периметр выпуклой оболочки всех вершин
данных многоугольников не превосходит суммы их периметров.
Для этого достаточно заметить, что по условию проекции данных
многоугольников на любую прямую покрывают проекцию выпуклой оболочки.
Источники и прецеденты использования
|
книга |
Автор |
Прасолов В.В. |
Год издания |
2001 |
Название |
Задачи по планиметрии |
Издательство |
МЦНМО |
Издание |
4* |
глава |
Номер |
13 |
Название |
Векторы |
Тема |
Векторы |
параграф |
Номер |
6 |
Название |
Метод усреднения |
Тема |
Метод усреднения |
задача |
Номер |
13.046 |