ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 58020
Условиеа) Пусть P — точка пересечения прямых AB и A1B1.
Докажите, что если среди точек A, B, A1, B1 и P нет
совпадающих, то общая точка описанных окружностей треугольников PAA1
и PBB1 является центром поворотной гомотетии, переводящей точку A
в A1, а точку B в B1, причем такая поворотная гомотетия
единственна.
Решениеа) Если O — центр поворотной гомотетии, переводящей отрезок AB в отрезок A1B1, то б) Достаточно заметить, что точка O является центром поворотной гомотетии, переводящей отрезок AB в отрезок BC, тогда и только тогда, когда Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке