ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58110
Тема:    [ Выпуклые многоугольники ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

На плоскости дано n точек, причем любые четыре из них являются вершинами выпуклого четырехугольника. Докажите, что эти точки являются вершинами выпуклого n-угольника.

Решение

Рассмотрим выпуклую оболочку данных точек. Она является выпуклым многоугольником. Нужно доказать, что все данные точки — его вершины. Предположим, что одна из данных точек (точка A) не является вершиной, т. е. лежит внутри или на стороне этого многоугольника. Диагоналями, выходящими из одной вершины, выпуклую оболочку можно разрезать на треугольники; точка A принадлежит одному из них. Вершины этого треугольника и точка A не могут быть вершинами выпуклого четырехугольника. Получено противоречие.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 22
Название Выпуклые и невыпуклые многоугольники
Тема Выпуклые и невыпуклые фигуры
параграф
Номер 1
Название Выпуклые многоугольники
Тема Выпуклые многоугольники
задача
Номер 22.001

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .