ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58131
Тема:    [ Теорема Хелли ]
Сложность: 7+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Несамопрересекающаяся ломаная расположена в данной полуплоскости, причём концы ломаной лежат на границе этой полуплоскости. Длина ломаной равна L, а площадь многоугольника, ограниченного ломаной и границей полуплоскости, равна S. Докажите, что S$ \le$L2/2$ \pi$.

Решение

Добавим к данному многоугольнику многоугольник, симметричный ему относительно границы полуплоскости. Полученный многоугольник имеет площадь 2S и периметр 2L. Поэтому согласно изопериметрическому неравенству 2S$ \le$(2L)2/4$ \pi$, т.е. S$ \le$L2/2$ \pi$.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 22
Название Выпуклые и невыпуклые многоугольники
Тема Выпуклые и невыпуклые фигуры
параграф
Номер 2
Название Изопериметрическое неравенство
Тема Теорема Хелли
задача
Номер 22.BIs15a

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .