ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 58143
Условиеа) Дан выпуклый многоугольник. Известно, что для любых трёх его сторон можно выбрать точку O внутри многоугольника так, что перпендикуляры, опущенные из точки O на эти три стороны, попадают на сами стороны, а не на их продолжения. Докажите, что тогда такую точку O можно выбрать для всех сторон одновременно.б) Докажите, что в случае выпуклого четырёхугольника такую точку O можно выбрать, если её можно выбрать для любых двух сторон. Решениеа) Для каждой стороны AB данного многоугольника рассмотрим полосу, ограниченную перпендикулярами к прямой AB, проведёнными через точки A и B. К этому набору выпуклых фигур добавим ещё и сам многоугольник. По условию любые три из этих фигур имеют общую точку. Поэтому по теореме Хелли все они имеют общую точку.б) Пусть ABCD — данный выпуклый четырёхугольник. Согласно задаче а) достаточно проверить, что требуемую точку O можно выбрать для любых трёх его сторон. Докажем, например, что её можно выбрать для сторон AB, BC и CD. Пусть X — множество всех точек четырёхугольника, для которых основания перпендикуляров, опущенных на стороны AB и CD, лежат на самих этих сторонах. По условию это множество не пусто. Рассмотрим три случая. 1) Углы B и C оба не тупые. Тогда нам подходит любая точка множества X. 2) Углы B и C оба тупые. Тогда нам подходит точка пересечения перпендикуляров к AB и CD, восставленных из точек B и C. 3) Угол B не тупой, а угол C тупой. Тогда нам подходит любая точка множества X, лежащая на перпендикуляре к прямой CD, восставленном из точки C. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|