ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58173
Тема:    [ Инварианты ]
Сложность: 5
Классы: 8,9
В корзину
Прислать комментарий

Условие

В центре каждой клетки шахматной доски стоит по фишке. Фишки переставили так, что попарные расстояния между ними не уменьшились. Докажите, что в действительности попарные расстояния не изменились.

Решение

Если хотя бы одно из расстояний между фишками увеличилось бы, то увеличилась бы и сумма всех попарных расстояний между фишками, но сумма всех попарных расстояний между фишками не изменяется при любой перестановке.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 23
Название Делимость, инварианты, раскраски
Тема Неопределено
параграф
Номер 3
Название Инварианты
Тема Инварианты
задача
Номер 23.014

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .