ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 58230
Условиеа) Докажите, что любой неравносторонний треугольник можно разрезать на неравные треугольники, подобные исходному.б) Докажите, что правильный треугольник нельзя разрезать на неравные правильные треугольники. Решениеа) Можно считать, что BC/AC = k > 1. Приложим к треугольнику ABC треугольники 1, 2, 3, 4 и 5 (см. рис.). Может оказаться, что треугольники 4 и 5 равны, т. е. k + k3 = k4. В этом случае дополним конструкцию треугольниками 6 и 7, а треугольник 5 заменим треугольником 8. Тогда треугольники 7 и 8 не равны, т. е. k6 ≠ k + k3 + k5. В самом деле, так как k + k3 = k4, то k6 = k2(k + k3) = k3 + k5 < k + k3 + k5.б) Предположим, что правильный треугольник разрезан на неравные правильные треугольники. Стороны двух треугольников разбиения не могут совпадать. Будем рассматривать только стороны треугольников разбиения, лежащие внутри (не на границе) исходного треугольника; пусть N — число таких сторон. Возникает три типа вершин треугольников разбиения (см. рис.). Из каждой вершины 1-го, 2-го и 3-го типа выходит соответственно 4, 12 и 6 сторон. Пусть n1, n2 и n3 — количества точек 1-го, 2-го и 3-го типа. Тогда N = (4n1 + 12n2 + 6n3)/2 = 2n1 + 6n2 + 3n3. Каждой точке 3-го типа можно сопоставить 3 стороны (на рис. это стороны AB, OP и OQ). Легко проверить, что каждая сторона будет соответствовать хотя бы одной точке 3-го типа. Следовательно, N3n3, а значит, 2n1 + 6n2 0. В частности, n1 = 0, т. е. разбиение состоит лишь из исходного треугольника. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|