ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 58270
Условиеа) Квадрат со стороной 1 покрыт несколькими меньшими квадратами со сторонами, параллельными его сторонам. Докажите, что среди них можно выбрать непересекающиеся квадраты, сумма площадей которых не меньше 1/9.б) Площадь объединения нескольких кругов равна 1. Докажите, что из них можно выбрать несколько попарно непересекающихся кругов с общей площадью не менее 1/9. Решениеа) Рассмотрим наибольший квадрат K покрытия и выбросим все квадраты, пересекающиеся с ним. Они лежат внутри квадрата, сторона которого в 3 раза больше стороны K, поэтому площадь, занимаемая ими, не больше 81, где s — площадь K. Квадрат K относим к выбранным и в дальнейшем его уже не рассматриваем. Для остальных квадратов проделываем то же самое до тех пор, пока все квадраты будут либо выбраны, либо выброшены. Если сумма площадей выбранных квадратов равна S, то общая площадь выброшенных квадратов не превосходит 8S. Поэтому 1S + 8S, т. е. S1/9.б) Выберем круг наибольшего радиуса, раздуем его в три раза и выбросим все круги, целиком лежащие в этом раздутии. Оставшиеся круги не пересекаются с первым. Для них проделаем то же самое и т. д. Раздутия всех выбранных кругов содержат все данные круги, а площадь раздутия в 9 раз больше площади исходного круга, поэтому 9S1, где S — общая площадь всех выбранных кругов. Следовательно, S1/9. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|