ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 58270
Тема:    [ Покрытия ]
Сложность: 6+
Классы: 8,9
В корзину
Прислать комментарий

Условие

а) Квадрат со стороной 1 покрыт несколькими меньшими квадратами со сторонами, параллельными его сторонам. Докажите, что среди них можно выбрать непересекающиеся квадраты, сумма площадей которых не меньше 1/9.
б) Площадь объединения нескольких кругов равна 1. Докажите, что из них можно выбрать несколько попарно непересекающихся кругов с общей площадью не менее 1/9.

Решение

а) Рассмотрим наибольший квадрат K покрытия и выбросим все квадраты, пересекающиеся с ним. Они лежат внутри квадрата, сторона которого в 3 раза больше стороны K, поэтому площадь, занимаемая ими, не больше 81, где s — площадь K. Квадрат K относим к выбранным и в дальнейшем его уже не рассматриваем. Для остальных квадратов проделываем то же самое до тех пор, пока все квадраты будут либо выбраны, либо выброшены. Если сумма площадей выбранных квадратов равна S, то общая площадь выброшенных квадратов не превосходит 8S. Поэтому 1$ \le$S + 8S, т. е. S$ \ge$1/9.
б) Выберем круг наибольшего радиуса, раздуем его в три раза и выбросим все круги, целиком лежащие в этом раздутии. Оставшиеся круги не пересекаются с первым. Для них проделаем то же самое и т. д. Раздутия всех выбранных кругов содержат все данные круги, а площадь раздутия в 9 раз больше площади исходного круга, поэтому 9S$ \ge$1, где S — общая площадь всех выбранных кругов. Следовательно, S$ \ge$1/9.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 25
Название Разрезания, разбиения, покрытия
Тема Разрезания, разбиения, покрытия и замощения
параграф
Номер 8
Название Покрытия
Тема Покрытия
задача
Номер 25.048

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .