ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60352
Темы:    [ Принцип Дирихле (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

В мешке 70 шаров, отличающихся только цветом: 20 красных, 20 синих, 20 жёлтых, остальные – чёрные и белые.
Какое наименьшее число шаров надо вынуть из мешка, не видя их, чтобы среди них было не менее 10 шаров одного цвета?


Решение

Вынув 37 шаров, мы рискуем получить по 9 красных, синих и жёлтых, и десяти шаров одного цвета не будет. Если же мы вытащим 38 шаров, то общее число красных, синих и жёлтых среди них не меньше 28, и шаров одного из этих цветов – не меньше десяти (поскольку  28 > 3·9).


Ответ

38 шаров.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 2
Название Комбинаторика
Тема Комбинаторика
параграф
Номер 2
Название Принцип Дирихле
Тема Принцип Дирихле (прочее)
задача
Номер 02.018

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .