ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60394
Темы:    [ Перестановки и подстановки (прочее) ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 8,9
Название задачи: Анаграммы.
В корзину
Прислать комментарий

Условие

Анаграммой называется произвольное слово, полученное из данного слова перестановкой букв. Сколько анаграмм можно составить из слов:
а) "точка";   б) "прямая";   в) "перешеек";   г) "биссектриса";   д) "абракадабра";   е) "комбинаторика"?


Подсказка

См. задачу 30330.


Ответ

а)  5! = 120;   б)  6! : 2 = 360;   в)  8! : 4! = 1680;   г)  11! : (2!·3!) = 3326400;   д)  11! : (5!·2·2) = 83160;   е)  13! : 24  анаграмм.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 2
Название Комбинаторика
Тема Комбинаторика
параграф
Номер 3
Название Размещения, перестановки и сочетания
Тема Классическая комбинаторика
задача
Номер 02.060

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .