ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60470
Темы:    [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Найдите все простые числа, которые равны сумме двух простых чисел и разности двух простых чисел.


Решение

Указанное простое число p нечётно, поэтому в сумме и разности участвуют числа разной чётности. Итак,  p = q + 2 = r – 2.  Отсюда видно, что числа дают разные остатки при делении на 3, значит, одно из них кратно 3, а так как оно простое, то равно 3.


Ответ

5.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 1
Название Простые числа
Тема Основная теорема арифметики. Разложение на простые сомножители
задача
Номер 03.018
олимпиада
Название Всероссийская олимпиада по математике
год
Год 1994
Этап
Вариант 4
класс
Класс 10
задача
Номер 94.4.10.5
олимпиада
Название Всероссийская олимпиада по математике
год
Год 1994
Этап
Вариант 4
класс
Класс 11
задача
Номер 94.4.11.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .