ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 60577
УсловиеФибоначчиева система счисления. Докажите, что произвольное натуральное число n, не превосходящее Fm, единственным образом можно представит в виде
n = где все числа b2, ..., bm
равны 0 либо 1, причем среди этих чисел нет двух единиц
стоящих рядом, то есть
bkbk + 1 = 0
(2
n = (bk...b2)F.
ПодсказкаДля разложения числа n в фибоначчиевой системе
счисления нужно воспользоваться ``жадным''
алгоритмом:
вычитать из n наибольшее
число Fm, не превосходящее n.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке