ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60606
Тема:    [ Цепные (непрерывные) дроби ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Докажите, что любое иррациональное число α допускает представление  α = [a0; a1, ..., an–1, αn],  где a0 – целое, a1, a2, ..., an–1 – натуральные,  αn > 1  – иррациональное действительное. Отсюда следует, что каждому иррациональному действительному числу можно поставить в соответствие бесконечную цепную дробь.


Решение

Положим  a0 = [α],  тогда  0 < {α} < 1.  Положим     (это натуральное число). И так далее.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 3
Название Алгоритм Евклида и основная теорема арифметики
Тема Алгебра и арифметика
параграф
Номер 5
Название Цепные дроби
Тема Цепные (непрерывные) дроби
задача
Номер 03.154

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .