ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60686
Темы:    [ Четность и нечетность ]
[ Квадратные уравнения. Формула корней ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Докажите, что если все коэффициенты уравнения  ax² + bx + c = 0  – целые нечётные числа, то ни один из корней этого уравнения не может быть рациональным.


Подсказка

Найдите остаток от деления дискриминанта на 8.


Решение

b² ≡ 1 (mod 8)  (см. задачу 34944),  4ab ≡ 4 (mod 8)  (так как ab нечётно). Значит, дискриминант  b² – 4ab ≡ 5 (mod 8)  и поэтому не может быть полным квадратом.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 3
Название Сравнения
Тема Деление с остатком. Арифметика остатков
задача
Номер 04.060

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .