ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60711
Темы:    [ Делимость чисел. Общие свойства ]
[ Линейная и полилинейная алгебра ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Докажите, что если  6n + 11m  делится на 31, то  n + 7m  также делится на 31.


Решение

11(n + 7m) = 7(6n + 11m) – 31n.  Поэтому  11(n + 7m)  делится на 31. Поскольку 7 и 31 взаимно просты, то и  n + 7m  делится на 31.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 3
Название Сравнения
Тема Деление с остатком. Арифметика остатков
задача
Номер 04.085

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .