ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60809
Тема:    [ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Аналогичные указанному в задаче 60808 признаки делимости существуют и для всех чисел вида  10n ± 1  и их делителей. Например, существует признак делимости на 21, из которого получается и признак делимости на 7. Как устроен признак делимости на 21?


Ответ

В алгоритме из условия задачи 60808 надо заменить 19 на 21 и вместо прибавления удвоенной цифры вычитать её.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 5
Название Признаки делимости
Тема Признаки делимости (прочее)
задача
Номер 04.183

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .