ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60828
Темы:    [ Деление с остатком ]
[ Китайская теорема об остатках ]
Сложность: 3+
Классы: 7,8,9,10
В корзину
Прислать комментарий

Условие

На столе лежат книги, которые надо упаковать. Если их связать в одинаковые пачки по 4, по 5 или по 6 книг, то каждый раз останется одна лишняя книга, а если связать по 7 книг в пачку, то лишних книг не останется. Какое наименьшее количество книг может быть на столе?


Решение

Пусть было n книг. Тогда  n – 1  делится на  60 = НОД(4, 5, 6),  а n делится на 7. Перебирая числа вида  60k + 1,  убеждаемся, что наименьшим из них, кратным 7, является 301.


Ответ

301 книга.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 6
Название Китайская теорема об остатках
Тема Деление с остатком. Арифметика остатков
задача
Номер 04.202

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .