ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60837
Тема:    [ Китайская теорема об остатках ]
Сложность: 4-
Классы: 10,11
Название задачи: Больное войско.
В корзину
Прислать комментарий

Условие

Генерал хочет построить для парада своих солдат в одинаковые квадратные каре (конечно, в каре должно быть более одного человека), но он не знает сколько солдат (от 1 до 37) находится в лазарете. Докажите, что у генерала может быть такое количество солдат, что он, независимо от заполнения лазарета, сумеет выполнить свое намерение. Например войско из 9 человек можно поставить в виде квадрата 3×3, а если один человек болен, то в виде двух квадратов 2×2.


Подсказка

Примените китайскую теорему об остатках с     где p1, ..., p37 – различные простые числа.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 4
Название Арифметика остатков
Тема Деление с остатком. Арифметика остатков
параграф
Номер 6
Название Китайская теорема об остатках
Тема Деление с остатком. Арифметика остатков
задача
Номер 04.211

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .