ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 60892
Темы:    [ Периодические и непериодические дроби ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Пусть число m имеет вид  m = 2a5bm1,  где  (10, m1) = 1.  Положим  k = max {a, b}.
Докажите, что период дроби 1/m начинается с (k+1)-й позиции после запятой, и имеет такую же длину, как и период дроби 1/m1.


Решение

См. замечание к задаче 60887.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 5
Название Числа, дроби, системы счисления
Тема Системы счисления
параграф
Номер 2
Название Десятичные дроби
Тема Десятичные дроби
задача
Номер 05.054

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .