ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61275
Темы:    [ Уравнения высших степеней (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 9,10,11
Название задачи: Метод Виета.
В корзину
Прислать комментарий

Условие

Когда  4p³ + 27q² < 0,  уравнение  x³ + px + q = 0  имеет три действительных корня (неприводимый случай кубического уравнения), но для того, чтобы их найти по формуле Кардано, необходимо использование комплексных чисел. Однако можно указать все три корня в явном виде через тригонометрические функции.
  а) Докажите, что при  p < 0  уравнение  x³ + px + q = 0  заменой  x = kt  сводится к уравнению  4t³ – 3t – r = 0   (*)  от переменной t.
  б) Докажите, что при  4p³ + 27q² ≤ 0  решениями уравнения (*) будут числа  t1 = cos,   t2 = cos,   t3 = cos,  где  φ = arccos r.


Решение

  а) После замены  x = kt  мы получим уравнение  k³t³ + kpt + q = 0.  Нам нужно, чтобы     поэтому можно взять     Подставив и разделив на  ¼ k³,  получим     при  4p³ + 27q² ≤ 0.

  б)  4 cos³α – 3 cos α – cos 3α = 0.  Поэтому при подстановке в левую часть уравнения (*) любого из чисел t1, t2, t3, получим ноль. Поскольку  |r| ≤ 1,  то  arccos r  определен.

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 9
Название Уравнения и системы
Тема Неопределено
параграф
Номер 1
Название Уравнения третьей степени
Тема Уравнения высших степеней. Возвратные уравнения
задача
Номер 09.024

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .