ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 61370
Темы:    [ Квадратичные неравенства (несколько переменных) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

Докажите неравенство   (a + b + c + d + 1)² ≥ 4(a² + b² + c² + d²)  при  a, b, c, d ∈ [0, 1].


Решение

Можно считать, что  a ≥ b ≥ c ≥ d.  Тогда
(a + b + c + d + 1)² = (a² + b² + c² + d²) + 2(ab + ac + ad + bc + bd + cd) + 2(a + b + c + d) + 1 ≥
≥ (a² + b² + c² + d²) + 2(b² + c² + d² + c² + d² + d²) + 2(a² + b² + c² + d²) + a² ≥ 4(a² + b² + c² + d²).

Источники и прецеденты использования

книга
Автор Алфутова Н.Б., Устинов А.В.
Год издания 2002
Название Алгебра и теория чисел
Издательство МЦНМО
Издание 1
глава
Номер 10
Название Неравенства
Тема Алгебраические неравенства и системы неравенств
параграф
Номер 1
Название Различные неравенства
Тема Алгебраические неравенства (прочее)
задача
Номер 10.019
книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 16
Название Неравенства
Тема Алгебраические неравенства и системы неравенств
задача
Номер 081

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .