ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64426
Темы:    [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Углы между биссектрисами ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

В треугольнике АВС из вершин А и В проведены биссектрисы, а из вершины С – медиана. Оказалось, что точки их попарного пересечения образуют прямоугольный равнобедренный треугольник. Найдите углы треугольника АВС.


Решение

  Пусть I – точка пересечения биссектрис треугольника АВС, а медиана СО пересекает проведенные биссектрисы в точках K и L (см. рис.). Так как
AIB = 90° + ½ ∠C > 90°,  то в полученном треугольнике KLI угол при вершине I равен 45°. Значит,  ∠AIB = 135°,  поэтому  ∠AСB = 90°.  Следовательно,  ОС = ОА = OB.

  Без ограничения общности можно считать, что прямым в треугольнике KLI является угол K. Тогда в треугольнике ВОС высота ВK совпадает с биссектрисой, поэтому  ОВ = ВС.  Таким образом, треугольник ВОС – равносторонний. Следовательно,  ∠ABС = 60°,  значит,  ∠ВAС = 30°.


Ответ

90°, 60° и 30°.

Источники и прецеденты использования

олимпиада
Название Московская математическая регата
год
Год 2013/14
класс
Класс 9
задача
Номер 9.3.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .