ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64450
Темы:    [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанный угол равен половине центрального ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

В треугольнике ABC угол C прямой. На катете CB как на диаметре во внешнюю сторону построена полуокружность, точка N – середина этой полуокружности. Докажите, что прямая AN делит пополам биссектрису CL.


Решение

Продлим отрезок BN до пересечения с прямой AC в точке K. В треугольнике BCK высота CN является и биссектрисой, поэтому  KN = NB.  Углы BCL и CBK равны 45°, то есть  CL || BK.  Значит, в треугольнике ABK медиана AN делит пополам и CL.

Замечания

6 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 35
Дата 2013/2014
вариант
Вариант осенний тур, сложный вариант, 8-9 класс
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .