ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64466
Темы:    [ Четырехугольник: вычисления, метрические соотношения. ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

а) Дан выпуклый четырёхугольник ABCD. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABC, BCD, CDA, DAB. Может ли оказаться, что  r4 > 2r3?

б) В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке E. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABE, BCE, CDE, DAE. Может ли оказаться, что  r2 > 2r1?


Решение

  а) Пусть для определенности  r4 = rABC.  Середина K диагонали AC лежит в одном из треугольников ABD, CBD, скажем, в треугольнике ABD. Тогда треугольник AKL, где L – середина AB, целиком содержится в треугольнике ABD, поэтому  rABC = 2rAKL < 2rABD ≤ 2r3.

  б) Пусть  r = r1  – радиус вписанной окружности треугольника ABE. Так как диаметры вписанных окружностей треугольников BCE, ADE меньше высот этих треугольников, совпадающих с высотами ha, hb треугольника ABE, достаточно доказать, что одна из этих высот не превосходит 4r. Пусть  AE ≥ BE.  Тогда полупериметр треугольника  p < AE + BE ≤ 2AE  и  


Ответ

а), б) Не может.

Замечания

Если константу 2 заменить на меньшую, то в обоих пунктах ответ изменится на положительный.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2013
год
Год 2013
задача
Номер 11

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .