ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 64602
Темы:    [ Прямоугольники и квадраты. Признаки и свойства ]
[ Симметрия помогает решить задачу ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 9,10,11
В корзину
Прислать комментарий

Условие

Даны выпуклый многоугольник и квадрат. Известно, что как ни расположи две копии многоугольника внутри квадрата, найдётся точка, принадлежащая обеим копиям. Докажите, что как ни расположи три копии многоугольника внутри квадрата, найдётся точка, принадлежащая всем трём копиям.


Решение

Каждая из трёх копий содержит центр квадрата (иначе симметричный ей относительно этого центра многоугольник также лежит внутри квадрата, а с этой копией не пересекается).

Замечания

5 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 29
Дата 2007/2008
вариант
Вариант весенний тур, тренировочный вариант, 10-11 класс
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .