ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 65083
УсловиеСреди 100 монет есть четыре фальшивых. Все настоящие монеты весят одинаково, фальшивые – тоже, фальшивая монета легче настоящей. Решение Разделим 100 монет на две группы (№1 и №2) по 33 монеты и одну группу (№3) из 34 монет. Первым взвешиванием положим на чаши весов группы 1 и 2. Если одна из чаш оказалась тяжелее другой, то на ней – не более одной фальшивой монеты. Тогда вторым взвешиванием можно сравнить любые две монеты из этой группы друг с другом: если одна из них тяжелее, то она настоящая, а если обе одинаковы, то обе являются настоящими. ЗамечанияЕсть и другие способы. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке