Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Пусть z1, z2, ..., zn – вершины выпуклого многоугольника. Найдите геометрическое место точек  z = λ1z1 + λ2z2 + ... + λnzn,  где λ1, λ2, ..., λn – такие действительные положительные числа, что  λ1 + λ2 + ... + λn = 1.

Вниз   Решение


В школе все ученики — отличники, хорошисты либо троечники. В круг встали 99 учеников. У каждого среди трёх соседей слева есть хотя бы один троечник, среди пяти соседей справа — хотя бы один отличник, а среди четырёх соседей — двух слева и двух справа — хотя бы один хорошист. Может ли в этом круге быть поровну отличников и троечников?

ВверхВниз   Решение


Докажите, что cтепень точки w относительно окружности  Azz + Bz – B z + C = 0  равна  

Вверх   Решение

Задача 65285
Темы:    [ Дискретное распределение ]
[ Средние величины ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Ася и Вася вырезают прямоугольники из клетчатой бумаги. Вася ленивый; он кидает игральную кость один раз и вырезает квадрат, сторона которого равна выпавшему числу очков. Ася кидает кость дважды и вырезает прямоугольник с длиной и шириной, равными выпавшим числам. У кого математическое ожидание площади прямоугольника больше?


Решение

  Пусть A и B – независимые случайные величины, принимающие значения 1, 2, ..., 6 с равными вероятностями. Тогда математическое ожидание площади Асиного прямоугольника равно  EAB = EA·EB = (EA)²  (так как A и B независимы). Ожидание площади Васиного прямоугольника EA².
  Поскольку  0 < DA = EA² – (EA)²,  то  EA² > (EA)².
  Значит, в среднем площадь Васиного квадрата больше площади Асиного прямоугольника.


Ответ

У Васи.

Замечания

Можно было сослаться на неравенство между средним арифметическим и средним квадратичным, а также честно вычислить EA2 и (EA)2.

Источники и прецеденты использования

олимпиада
Название Заочная олимпиада по теории вероятностей и статистике
год
Дата 2009
задача
Номер 9

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .