ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 65673
УсловиеВасе задали на дом уравнение x² + p1x + q1 = 0, где p1 и q1 – целые числа. Он нашел его корни p2 и q2 и написал новое уравнение x² + p2x + q2 = 0. Повторив операцию еще трижды, Вася заметил, что он решал четыре квадратных уравнения и каждое имело два различных целых корня (если из двух возможных уравнений два различных корня имело ровно одно, то Вася всегда выбирал его, а если оба – любое). Однако, как ни старался Вася, у него не получилось составить пятое уравнение так, чтобы оно имело два различных вещественных корня, и Вася сильно расстроился. Какое уравнение Васе задали на дом? Решение Пятое уравнение с целыми коэффициентами не должно иметь различных вещественных корней. Значит, если его коэффициенты обозначить через p5 и q5, то и Оба числа положительны, и при этом, возводя в квадрат первое неравенство и подставляя условие из второго, получаем Отсюда
оба числа меньше 5, и перебором находим единственную подходящую пару: 1 и 2. Ответx² + x – 30 = 0. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|